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Abstract

A two-stage scaling relationship of the source parameters for crustal earthquakes in Japan has previously been
constructed, in which source parameters obtained from the results of waveform inversion of strong motion data are
combined with parameters estimated based on geological and geomorphological surveys. A three-stage scaling
relationship was subsequently developed to extend scaling to crustal earthquakes with magnitudes greater than M,,
7.4.The effectiveness of these scaling relationships was then examined based on the results of waveform inversion
of 18 recent crustal earthquakes (M,, 5.4-6.9) that occurred in Japan since the 1995 Hyogo-ken Nanbu earthquake.
The 2016 Kumamoto earthquake, with M,, 7.0, was one of the largest earthquakes to occur since dense and accurate
strong motion observation networks, such as K-NET and KiK-net, were deployed after the 1995 Hyogo-ken Nanbu
earthquake. We examined the applicability of the scaling relationships of the source parameters of crustal earth-
quakes in Japan to the 2016 Kumamoto earthquake. The rupture area and asperity area were determined based on
slip distributions obtained from waveform inversion of the 2016 Kumamoto earthquake observations. We found that
the relationship between the rupture area and the seismic moment for the 2016 Kumamoto earthquake follows the
second-stage scaling within one standard deviation (o = 0.14). The ratio of the asperity area to the rupture area for
the 2016 Kumamoto earthquake is nearly the same as ratios previously obtained for crustal earthquakes. Furthermore,
we simulated the ground motions of this earthquake using a characterized source model consisting of strong motion
generation areas (SMGAs) based on the empirical Green'’s function (EGF) method. The locations and areas of the
SMGAs were determined through comparison between the synthetic ground motions and observed motions. The
sizes of the SMGAs were nearly coincident with the asperities with large slip. The synthetic ground motions obtained
using the EGF method agree well with the observed motions in terms of acceleration, velocity, and displacement
within the frequency range of 0.3-10 Hz. These findings indicate that the 2016 Kumamoto earthquake is a standard
event that follows the scaling relationship of crustal earthquakes in Japan.
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Background

One of the most important factors when predicting
strong ground motions is the characterization of source
models for future earthquakes. Fundamental information
for the source model comes from source scaling relation-
ships, which control the fault parameters necessary to
estimate ground motions. Conventionally, scaling rela-
tionships (e.g., Kanamori and Anderson 1975) have been
evaluated based on the fault length and fault slip, which
are primarily determined geologically from surface off-
sets, and on the rupture area, which is determined seis-
mologically from the aftershock distribution. The seismic
moments of large earthquakes are estimated primar-
ily from teleseismic data, although they are sometimes
inferred from geodetic data. Catalogs of source param-
eters include a variety of qualities, some of which are not
always available for strong motion estimation (e.g., Wells
and Coppersmith 1994; Stirling et al. 2002, 2013). To
predict near-source strong motions dominated by short-
period motions of <1 s, which are of particular interest to
engineers, we must carefully assess whether conventional
scaling relationships are applicable.

Irikura and Miyake (2001) proposed a two-stage scaling
relationship of source parameters for crustal earthquakes
in Japan, which combined source parameters obtained
from the waveform inversion of strong-motion data
(Somerville et al. 1999; Miyakoshi et al. 2000) with those
obtained from geological and geomorphological surveys,
selecting only reliable data from the source parameter
catalog compiled by Wells and Coppersmith (1994). They
found that there is a strong correlation between source
parameters from the waveform inversion results and
those from geological and geomorphological data for
crustal earthquakes of magnitudes larger than 7.

Accumulated strong ground motion data provide us
with crucial information concerning the rupture pro-
cesses of earthquakes and wave propagation for simu-
lating ground motions during large earthquakes. The
scaling relationships of the fault parameters from the
waveform inversion results for the source processes
based on strong-motion data provide a clue as to how to
solve this problem.

A three-stage scaling model of the source parameters
for crustal earthquakes in Japan has been constructed
by Irikura and Miyake (2001) and Murotani et al. (2015).
Miyakoshi et al. (2015) examined the effectiveness of
these scaling relationships using the waveform inver-
sion results of 18 crustal earthquakes (M,, 5.4—6.9) that
occurred in Japan between the 1995 Hyogo-ken Nanbu
earthquake and 2015. The maximum M,, of the crustal
earthquakes whose slip distributions were determined by
these workers from waveform inversion was 6.9, i.e., the
1995 Hyogo-ken Nanbu earthquake itself.
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The 2016 Kumamoto earthquake with M,, 7.0 was one
of the largest earthquakes since the 1995 Hyogo-ken
Nanbu earthquake. Strong ground motions from this
earthquake were recorded by dense and accurate strong-
motion networks such as Kyoshin Net (K-NET) and
Kiban-Kyoshin Net (KiK-net) of the National Research
Institute for Earth Science and Disaster Resilience
(NIED) and the Seismic Intensity Meters Network of the
Japan Metrological Agency (JMA).

We collected slip distributions inverted by the strong-
motion data of the 2016 Kumamoto earthquake and
extracted the rupture and asperity areas from the wave-
form inversion results. Then, we examined whether
the relationships between the rupture area and seismic
moment and between the asperity area and rupture area
followed the scaling relationships of the known source
parameters for Japan. We investigated whether these rela-
tionships were useful for reproducing the strong ground
motions of the 2016 Kumamoto earthquake. In addi-
tion, we constructed a characterized source model with
the SMGAs based on the slip distribution model. We will
discuss the validity of the simulations of strong ground
motions using the SMGA source model and compare these
results to observations of strong ground motions recorded
near the source fault of the 2016 Kumamoto earthquake.

Scaling relationships
The three-stage scaling relationship has two bending
points. The first bending of the scaling relationship for
the rupture area S and the seismic moment M, exists
at approximately M, = 7.5 x 10'® N m, ie.,, M,, 6.5,
because of the thickness of the seismogenic zone. In the
first stage, S is proportional to M??, and in the second
stage it is proportional to M/?, as initially indicated by
Shimazaki (1986). Murotani et al. (2015) assumed that
a second bending at about M, = 1.8 x 10 (N m), i..,
M,, 7.4, was caused by the saturation of the slip on the
fault plane. In the third stage, S is proportional to M, for
M, > 1.8 x 10%° (N m).

The scaling relationship can be summarized as follows.

The first scaling relationship between the source area §
and the seismic moment M, is expressed as

S (km?) = 223 x 107% x (M, x 10)*? for
My < 7.5 x 10" (N m),

the second is expressed as
S (km?) = 4.24 x 1071 x (M, x 10”)** for 7.5 x 10'®
(N'm) < M, < 1.8 x 10% (N m),

and the third is expressed as

S (km? = 1.0 x 107Y7 x M, for M, > 1.8 x 10% (N m).
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Strong-motion data from the 2016 Kumamoto earth-
quake were recorded by K-NET and KiK-net. This event
had a maximum seismic intensity of 7, was observed at
several stations near the source, and caused widespread
damage across Kumamoto Prefecture. High acceleration
values were observed, such as 1791 cm/s* (synthesis of
the three components) at the municipal observatory of
Ohzu and 1362 cm/s* at KMMH16 (KiK-net Mashiki).

Slip distributions obtained from waveform inversion of
the strong-motion data from this event have previously
been published (e.g., Asano and Iwata 2016; Kubo et al.
2016; Yoshida et al. 2016). Kubo et al. (2016) performed
waveform inversion with strong-motion data from 27 sta-
tions of K-NET, KiK-net, and F-net based on an assumed
single fault plane with a strike of 226° and a dip of 65°
and a fault area 56 km in length and 24 km in width.
The assumed fault plane is consistent with the geometry
and location of the Futagawa fault zone (Headquarters
for Earthquake Research Promotion 2016). Asano and
Iwata (2016) used strong-motion data from 15 stations
of K-NET, KiK-net, and F-net and assumed a fault model
with two segments along the Futagawa and Hinagu fault
zones.
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Yoshida et al. (2016) used strong-motion data from
22 stations of K-NET and KiK-net, and an assumed
fault model with four fault segments of different strikes
and dips: one (Seg. 1) along the Hinagu fault zone,
another (Seg. 2) along a plane connecting the Futagawa
and Hinagu fault zones, and two more (Seg. 3 and Seg.
4) along the Futagawa fault zone, as shown in Fig. 1la. A
map view of the aftershock distribution within 48 h after
the 2016 Kumamoto earthquake is also shown in Fig. 1a.
Yoshida et al. (2016) conducted a two-step approach for
multiple time-window kinematic waveform inversions of
strong-motion data to estimate detailed slip distributions
on these four fault segments. First, the slip distribution
was inverted using 0.05—0.5 Hz band-pass filtered strong-
motion data, as shown in Fig. 1b. The rupture area of the
earthquake was estimated using the trimming criterion
of Somerville et al. (1999) with the slip model from the
waveform inversion. The trimming results remove two
columns of the segment at the southwestern edge (Seg.
1), which reduces the rupture area and seismic moment
by 10% and 3%, respectively. Secondly, the slip distribu-
tion was reanalyzed based on the 0.05-1.0 Hz waveform
inversion of the strong-motion data for this reduced
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Fig. 1 Map view of the 2016 Kumamoto earthquake and the distribution of total slip. a Map showing the locations of the four fault segments of
the source fault model (four rectangles), the observational stations (black triangles) and the aftershocks (circles) that occurred within 48 h of the
mainshock, as reported in the JMA unified hypocenter catalog. The star indicates the starting point of the mainshock rupture, The blue lines indicate
the locations of active faults (National Institute of Advanced Industrial Science and Technology). b Total slip distribution based on the 0.05-0.5 Hz
strong-motion waveform inversion of Yoshida et al. (2016). The entire rupture area was trimmed following the criteria defined by Somerville et al.
£99). cTotal slip distribution based on the 0.05-1.0 Hz strong-motion waveform inversion (Yoshida et al. 2016)
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fault plane, as shown in Fig. lc. For this inversion analy-
sis, more detailed time windows were used with shorter
durations and larger numbers of windows to maintain
the total window length at each subfault. The rupture
area from the 0.05-1.0 Hz waveform inversion remains
unchanged after trimming. The “true” rupture area and
seismic moment after the two-step waveform inversion
performed by Yoshida et al. (2016) are shown in Table 1.

We have also collected slip models inverted by other
authors (Asano and Iwata 2016; Kubo et al. 2016).
Rupture areas were estimated based on the criteria of
Somerville et al. (1999). The source parameters from the
results of all three inversions are compiled in Table 1.
The estimated values of the seismic moment vary from
study to study because the methods and data used for
the inversion analyses differ. The seismic moment was
also determined using a long-period full-wave inversion
analysis of broadband F-net data (Fukuyama et al. 1998).
In past evaluation of the scaling relationships of crustal
earthquakes (Miyakoshi et al. 2015), seismic moments
obtained from the long-period, full-wave data from the
F-net were found to be more stable than those from the
inversion of strong-motion data. Therefore, to be consist-
ent with the previous study, we adopted the F-net seismic
moment and a logarithmic average of the rupture areas
of the three models for the scaling relationship of seismic
moment versus rupture area.

The relationship between the rupture area S and the
seismic moment M, for the 2016 Kumamoto earth-
quake with M, 7.0 was added to the scaling relationships
confirmed by Miyakoshi et al. (2015) shown in Fig. 2.
Without the 2016 Kumamoto earthquake, the stand-
ard deviation of the second stage was calculated to be
o = 0.14. The relationship of S versus M, for this event
follows the second-stage scaling within one standard
deviation. We also found that the relationships for indi-
vidual models are within one standard deviation.

Next, we examined the relationship between the aver-
age slip D and the seismic moment M for inland crustal
earthquakes. The average slip D on the source fault for
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each model was estimated from the heterogeneous slip
distributions of the waveform inversion results. The aver-
age slip of 1.66 m reported in Table 1 is the logarithmic
average of the average slips from the three models (Asano
and Iwata 2016; Kubo et al. 2016; Yoshida et al. 2016).
The seismic moment from F-net was adopted. Then,
the relationship of D versus M, for the 2016 Kumamoto
earthquake was plotted with the corresponding scaling
relationship of Miyakoshi et al. (2015) in Fig. 3. In the
second stage, D increased proportionally with M}/, that
is, D versus M, for this event nearly coincides with the
second-stage scaling. The relationships between D and
M, for individual models are also plotted in Fig. 3.

For strong motion estimation, another scaling relation-
ship between the rupture area S and the asperity area S,
plays an important role. It has been confirmed by Irikura
and Miyake (2001) and Miyakoshi et al. (2015) that an
asperity area with a large slip increases proportionally in
area with the entire rupture area. The asperity area was
determined following the procedure of Somerville et al.
(1999) based on the inverted heterogeneous slip distribu-
tions. The asperity area is 160 km?, which is about 20% of
the trimmed fault area of Yoshida et al. (2016). The loga-
rithmic average of the asperity areas of the three models
is 178 km? The combined asperity area S, scales with the
seismic moment M, as shown in Fig. 4, which includes
the results for the 2016 Kumamoto earthquale.

Strong motion generation area (SMGA) model

for simulating strong ground motions of the 2016
Kumamoto earthquake

Strong ground motions are more closely related to
regions of slip heterogeneity rather than the entire rup-
ture area and total seismic moment (Irikura and Miyake
2011). Therefore, a characterized source model was pro-
posed that consisted of one or several asperities with
large slips and a background area with less slip (Miyake
et al. 2003) based on source characterizations defined
using slip distributions from the waveform inversion of
strong-motion data.

Table 1 Source parameters of the 2016 Kumamoto earthquake obtained from inversion results

References Mo (inv.)® Mo (F-net) Length Width Rupture area Av.slip Max. slip Total asperity area
Nm Nm km km km? m m km? /area
Kubo et al. (2016) 5.3E+19 44E+19 469 56 19.8". 24 930 1344 166° 123 495 455 178 260 0.19 0.19
Asano K, lwata T (2016)  4.5E4+19 42 18 756 1.87 513 136 0.18
Yoshida et al. (2016) 4.8E+19 44P 18 792 1.98 518 160 0.20

3 Seismic moment obtained from inversion results

b Fault length and width are trimmed following the criterion of Somerville et al. (1999)

¢ Logarithm averages of the three models
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average slips from individual models shown in Table 1

Asperities are regions that have large slip relative to the
average slip in the rupture area (Somerville et al. 1999).
These asperity areas, as well as the total rupture area,
scale with the seismic moment (Fig. 4). The majority of
strong-motion records are reproduced with motions
generated from asperities. Contributions from the back-
ground area of the characterized source model are not
important for strong-motion records but must match

long-period motions, including the seismic moment
(Miyake et al. 2003; Irikura and Miyake 2011).

Therefore, the synthetic ground motions were calcu-
lated with the assumption that ground motions were
only generated within the SMGAs, which were redefined
based on asperity location and area information (Kamae
and Irikura 1998; Miyake et al. 2003). The synthetic
ground motions from the SMGAs approximately agree
with the observed motions (Kamae and Irikura 1998). For
the 1995 Hyogo-ken Nanbu earthquake (M,, 6.9), which
was nearly the same size as the 2016 Kumamoto earth-
quake, the period range available for the SMGA model is
shorter than 5 s. We found that for crustal earthquakes,
the SMGAs coincide approximately with asperity area
(Miyake et al. 2003). Therefore, this characterized source
model consisting of SMGAs with large stress parameters
and a background area with a zero stress parameter is
called the SMGA source model.

We estimated the SMGA source model by compar-
ing the synthetic and observed ground motions from
the 2016 Kumamoto earthquake. Whether the SMGAs
coincide with the asperity areas of large slip is dis-
cussed below. The empirical Green’s function (EGF)
method was used to simulate strong ground motions
to avoid difficulty in obtaining accurate velocity
structures.

First, we constructed a characterized source model
with the SMGAs based on the slip distribution model of
Yoshida et al. (2016). This model consists of four segments,
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as shown in Fig. 1a. As shown in the left panel of Fig. 5, we
assumed an SMGA in each segment, except the northeast
segment (Seg. 4) of the Futagawa fault zone located near
the Mount Aso volcano. The northeast segment generated
relatively small peak-moment-rate motions compared to
the other three segments (Fig. 6, lower).

The EGF events whose records are used as the EGFs
were carefully selected to have hypocenters close to the
SMGAs with radiation characteristics nearly identi-
cal to those of the target events. We selected records of
a foreshock (M,, 4.9, EGF1) and an aftershock (M,, 5.1,
EGF2) for the EGFs. The EGF1 event occurred very close
to SMGAL1 and inside SMGAZ2, with predominant strike-
slip faulting similar to the focal mechanism of the main-
shock (Fig. 5, left). Therefore, the records of EGF1 were
used as the EGFs for SMGA1 and SMGA2. However, the

EGF2 event occurred very close to SMGA3, with strike-
slip faulting and a normal-faulting component (Fig. 5,
left) similar to the focal mechanism around SMGA3 dur-
ing the mainshock. Therefore, we selected the records of
EGF2 for the EGFs for SMGA3.

We calculated the spectral ratios between the main-
shock and the EGF events to estimate the corner fre-
quency of the EGF events (Fig. 5, right). The source areas
and the stress parameters of these events were estimated
from the seismic moment and the corner frequency using
Brune’s (1970, 1971) formula. The parameters of these
events are listed in Table 2. We found that the records
of the EGF events were reliable within the frequency
range of 0.2—10 Hz because the spectral ratios follow the
omega-squared model in this frequency range and devi-
ate from it below 0.2 Hz and beyond 10 Hz.
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Each SMGA area was divided into N x N subfaults, the
areas of which were taken to be equal to the fault area of
each EGF event. The location and size of each SMGA and
the rupture starting point, rupture velocity and slip dura-
tion inside each SMGA were estimated based on compar-
ison of the timing, shape and amplitude of the synthetic
and observed waveforms through trial and error.

A map view of the three SMGAs is shown in the
upper panel of Fig. 6. The fit between the synthetic and
observed waveforms in this analysis was judged via visual

inspection, because the parameters for the three SMGAs
are by necessity optimized simultaneously. The three
best-fit SMGASs in this analysis are plotted in the lower
panel of Fig. 6, with the peak moment-rate distributions
drawn in warm colors on the three segments of Yoshida
et al. (2016). The source parameters of the SMGAs are
listed in Table 3. The observed and synthetic ground
motions are shown in Fig. 7a—c. The agreement is sat-
isfactory for acceleration, velocity, and displacement at
most of the stations.
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Table 2 Source parameters of the EGF1 event (foreshock)
and the EGF2 event (aftershock)

EGF1

EGF2

Origin time (JST)?

2016/04/14,23:43

2016/04/16, 09:48

Depth (km)? 14.2 159

Seismic moment (N m)® 2.71 x 10'° 627 x 10'®
M, 49 5.2

Strike, dip, rake (deg,)b 279,67,—22 230,38,—112
V, (km/s) 34 34

Corner frequency (Hz) 1.20 0.73

Fault length (km) 1.86 3.01

Stress parameter (MPa) 103 54

2 JMA,  F-net, € J-SHISV2: Fujiwara et al. (2012)

Table 3 Parameters of the three-SMGA model based
on the slip distribution of Yoshida et al. (2016)

SMGA1 SMGA2 SMGA3
Area (km?) 51.8 51.8 1000
Seismic moment (N m) 208 x 10" 208 x 10" 549 x 10'8
Rise time (s) 06 0.6 06
Stress parameter (MPa) 13.6 13.6 134
Rupture velocity (m/s) 2.8 2.8 2.8

Next, we constructed a characterized source model
with the SMGAs based on the single fault plane model
along the Futagawa fault zone estimated by Kubo et al.
(2016) to be the source fault of the 2016 Kumamoto
earthquake. It is preferable to use simpler fault geometry
to predict strong ground motions for future earthquakes
if synthetic motions that fit the observed motions reason-
ably well can be obtained.

We formulated a simplified SMGA model where “a sin-
gle SMGA” was put into the single fault plane proposed
by Kubo et al. (2016) based on the slip distribution. For
the EGFs, we selected records of a foreshock (M,, 4.4)
that had nearly the same focal mechanism as the main-
shock and that occurred inside the SMGA. We also cal-
culated the spectral ratios between the mainshock and
the EGF event to estimate the corner frequency of the
EGF event, the source area, and the stress parameter. The
source parameters of this event are listed in Table 4. The
reliable frequency range in this case was 0.3—10 Hz.

The entire assumed fault plane and the SMGA are
shown in Fig. 8 with the observed stations used for this
analysis. The best-fit characterized source model to simu-
late ground motions using the EGF method was deter-
mined through choosing the starting point, rupture
velocity, and slip duration by comparing the observed
and synthetic waveforms. The criterion for the best-fit
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is minimizing the residuals between the observed and
synthetic waveforms using the fitness function given by
Miyake et al. (1999). The residual is defined as the sum of
the squared residuals of the displacement waveforms and
acceleration envelopes.

The best-fit SMGA to the observed waveforms is shown
in Fig. 9 with the slip distribution reported by Kubo et al.
(2016) indicated with warm colors. The parameters of
the SMGA used for the simulation, such as length, width,
rise time, seismic moment, and stress parameter, are
listed in Table 5. The synthetic motions agree with the
observed motions for acceleration, velocity, and displace-
ment, as shown in Fig. 10, including at KMMH16 (KiK-
net Mashiki), KMMH14 (KiK-net Toyono) and KMMO005
(K-NET Ohzu), which are located very near the source
fault.

The location of the SMGA indicated in Fig. 9 coincides
with a large slip area deeper than 5 km but does not cor-
respond to a near-surface slip area in the northeast of the
fault plane, which is consistent with the SMGA model
in the upper panel of Fig. 6 based on the slip distribu-
tions of Yoshida et al. (2016). The inverted slip-velocity
time functions in the near-surface areas in the lower
panel of Fig. 6 have motions longer than 3 s. Therefore,
the ground motions generated by the large near-surface
slip may have had little influence on the strong ground
motions shorter than 3 s. This finding may explain why
there were no SMGAss in the northeast area of the fault
plane shown in the upper panel of Fig. 6 based on the
model of Yoshida et al. (2016) or in Fig. 9 based on the
model of Kubo et al. (2016).

The combined area of the three SMGAs from the four-
segment model of Yoshida et al. (2016) is about 204 km?,
The SMGA from the single fault plane model of Kubo
et al. (2016) is 17.3 km in length and 13.0 km in width, for
an area of 224.9 km? Conversely, the asperity area based
on the inverted heterogeneous slip distributions, i.e., the
logarithmic average of the three models in Table 1, is
about 180 km?. Therefore, we found that both the com-
bined area of the three SMGAs in Fig. 6 and the area of
the single SMGA in Fig. 9, which were obtained using
different forward modeling approaches, are nearly the
same as the asperity area determined based on the slip
distributions from waveform inversion using the strong-
motion data.

The SMGAs in the upper panel of Fig. 6 obtained based
on the four-segments source model of Yoshida et al.
(2016) do not always coincide with the SMGA in Fig. 9
from the single segment source model of Kubo et al.
(2016). However, the locations and the combined area of
the three SMGAs in Fig. 6 are nearly the same as those
of the SMGA in Fig. 9. The synthetic ground motions for
acceleration, velocity, and displacement shown in Fig. 7
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(See figure on previous page.)

Fig. 7 Comparisons of the observed (black) and synthetic (red) ground motions of three components (east-west, north-south, and up-down).
The available frequency range is from 0.2 to 10 Hz. a Acceleration in cm/s?, b velocity in cm/s and ¢ displacement in cm. The numbers in each trace

indicate the maximum amplitude

have almost the same amplitudes as those in Fig. 10.
These findings indicate that this method of estimating
ground motion based on SMGA models is robust because
the simulation results do not differ greatly between these

different SMGA models.

Conclusions

A three-stage scaling model of the source parameters
for crustal earthquakes in Japan has previously been

Table 4 Source parameters of the EGF event (foreshock)

Origin time (JST)? 2016/04/15, 0:50
Depth (km)? 134
Seismic moment (N m)® 3.86 x 10"
ME, 44
Strike, dip, rake (deg.)® 209, 70, 177
V; (km/s) 34
Corner frequency (Hz) 1.55
Fault length (km) 1.44
Stress parameter (MPa) 316
2 JMA;® F-net; © JSHISV2: Fujiwara et al. (2012)
-
-~ I
AL P Ay KNMHO2
» v
33°00' KMP\VAHO,%
KM?;dO(E
N Kiidoos
¢ adde KMMHOG
X Main.
* A\
.‘ X \¢ ll 4 V:/‘
NMVHIAL g
3230y =
KMI;M)M
KM Cosokm

130730

131°00

constructed by Irikura and Miyake (2001) and Muro-
tani et al. (2015) based on source parameters from
the results of waveform inversion with strong-motion
data. Miyakoshi et al. (2015) examined the validity
of these scaling relationships using waveform inver-
sion results for 18 crustal earthquakes (M, 5.4—6.9) in
Japan since the 1995 Hyogo-ken Nanbu earthquake.
The 2016 Kumamoto earthquake, with M,, 7.0, is one
of the largest earthquakes in this interval of time, and
the associated strong ground motions were recorded by
dense and accurate strong-motion networks. The main
purpose of this study was to validate whether the scal-
ing relationships of the source parameters for crustal

328°

1306° 1308° 131 1312

Fig. 9 Map projection of the slip distribution of Kubo et al. (2016)
and the best-fit model of the SMGA (red rectangle). The locations of
active faults are indicated by purple lines and aftershocks are marked
by blue circles. Background map was made using GSI Maps from the
Geospatial Information Authority of Japan (http://maps.gsi.go.jp) This
figure is modified from Kubo et al. (2016)

Table 5 Parameters of the single SMGA model based
on the slip distribution of Kubo et al. (2016)

Fig. 8 Map showing the entire fault plane along the Futagawa fault
zone (Kubo et al. 2016) and the SMGA model for the strong motion
estimation. The epicenters (stars) of the mainshock and the EGF event
(M,, 4.4, 2016/04/15) are shown with their moment tensor solutions
determined by F-net in the lower hemisphere projection. The stations
used in this simulation are indicated by downward-pointing triangles

SMGA
Area (km?) 2249
Seismic moment (N m) 1.83 x 10"
Rise time (s) 0.8
Stress parameter (MPa) 139
Rupture velocity (km/s) 28
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Fig. 10 Comparison of the observed (black) and synthetic (red) ground motions of three components (east-west, north—south, and up-down).
The available frequency range is from 0.3 to 10 Hz. a Acceleration in cm/s? b velocity in cm/s, and ¢ displacement in cm. The numbers in each trace

indicate the maximum amplitude

earthquakes in Japan are applicable to the 2016 Kuma-
moto earthquake.

We collected slip distributions inverted from strong-
motion data of the 2016 Kumamoto earthquake and
extracted the rupture area and the asperity area from
the waveform inversion results. Without including the
2016 Kumamoto earthquake, the standard deviation
of the second stage was calculated to be o = 0.14. We
confirmed that the scaling relationship between the rup-
ture area S and the seismic moment M, is applicable to
the second stage for the 2016 Kumamoto earthquake
within one standard deviation. We also found that the
average slip D increases proportionally with M}/* in the
second-stage scaling, including for the 2016 Kumamoto
earthquake.

Furthermore, we simulated the strong ground motions
of the 2016 Kumamoto earthquake using the character-
ized source model with an SMGA in a fault segment
using the EGF method. The synthetic motions obtained
with the EGF method agree with the observed motions
with respect to acceleration, velocity, and displacement
in the frequency range from 0.3 to 10 Hz.

Therefore, we conclude that the scaling relationships
of the source parameters are appropriate to reproduce
the strong ground motions of the 2016 Kumamoto
earthqualke.
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